domingo, 14 de junio de 2015

Elipse







Una elipse es el lugar geométrico de todos los puntos de un plano para los cuales se cumple que el cociente entre sus distancias a un punto fijo que se denomina foco y a una recta dada llamada directriz permanece constante y es igual a la excentricidad de la misma.



Elementos de una elipse






La elipse y algunas de sus propiedades geométricas.
La elipse es una curva plana y cerrada, simétrica respecto a dos ejes perpendiculares entre sí:
El semieje mayor (el segmento C-a de la figura), y
El semieje menor (el segmento C-b de la figura).
Miden la mitad del eje mayor y menor respectivamente.
Puntos de una elipse
Los focos de la elipse son dos puntos equidistantes del centro,F1 y F2 en el eje mayor. La suma de las distancias desde cualquier punto P de la elipse a los dos focos es constante, e igual a la longitud del diámetro mayor (d (P,F1)+d(P,F2)=2a).
Por comodidad denotaremos por PQ la distancia entre dos puntos P y Q.
Si F1 y F2 son dos puntos de un plano, y 2a es una constante mayor que la distancia F1F2, un punto P pertenecerá a la elipse si se cumple la relación:



Don de Descripción: a \, es la medida del semieje mayor de la elipse.
Ejes de una elipse
El eje mayor, 2a, es la mayor distancia entre dos puntos opuestos de la elipse. El resultado de la suma de las distancias de cualquier punto a los focos es constante y equivale al eje mayor. El eje menor 2b, es la menor distancia entre dos puntos opuestos de la elipse. Los ejes de la elipse son perpendiculares entre sí.

Excentricidad de una elipse
La excentricidad ε (épsilon) de una elipse es la razón entre su se mi distancia focal (longitud del segmento que parte del centro de la elipse y acaba en uno de sus focos), denominada por la letra c, y su semieje mayor. Su valor se encuentra entre cero y uno.







La excentricidad indica la forma de una elipse; una elipse será más redondeada cuanto más se aproxime su excentricidad al valor cero.4 La designación tradicional de la excentricidad es la letra griega ε llamada épsilon.
(No se debe usar la letra e para designarla, porque se reserva para la base de los logaritmos naturales o neperianos. Véase: número e).
Excentricidad angular de una elipse
La excentricidad angular Descripción: \alpha es el ángulo para el cual el valor de la función trigonométrica seno concuerda con la excentricidadDescripción: \varepsilon, esto es:









En la figura de la derecha se muestran los dos radio vectores correspondientes a cada punto P de una elipse, los vectores que van de los focos F1 y F2 a P. Las longitudes de los segmentos correspondientes a cada uno son PF1 (color azul) y PF2 (color rojo), y en la animación se ilustra como varían para diversos puntos P de la elipse.
Como establece la definición inicial de la elipse como lugar geométrico, para todos los puntos P de la elipse la suma de las longitudes de sus dos radio vectores es una cantidad constante igual a la longitud 2a del eje mayor:
PF1 + PF2 = 2a
En la elipse de la imagen 2a vale 10 y se ilustra, para un conjunto selecto de puntos, cómo se cumple la definición.
Directrices de la elipse






La recta d,D es una de las 2 directrices de la elipse.
Cada foco F de la elipse está asociado con una recta paralela al semieje menor llamada directriz (ver ilustración de la derecha). La distancia de cualquier punto P de la elipse hasta el foco F es una fracción constante de la distancia perpendicular de ese punto P a la directriz que resulta en la igualdad:

La relación entre estas dos distancias es la excentricidad Descripción: \varepsilon de la elipse. Esta propiedad (que puede ser probada con la herramienta esferas de Dandelin) puede ser tomada como otra definición alternativa de la elipse.



Además de la bien conocida relación
     también es cierto que
la fórmula  



Aunque en la figura solo se dibujó la directriz del foco derecho, existe otra directriz para el foco izquierdo cuya distancia del centro O es -d, la cual además es paralela a la directriz anterior. Ver más adelante cómo se dibuja la directriz.
Elementos gráficos de la elipse
Nomenclatura






La descripción corresponde a las imágenes de la derecha.
Los diámetros principales o ejes principales son los diámetros máximo y mínimo de la elipse, perpendiculares entre sí y que pasan por el centro. Tradicionalmente son nombrados A-B el mayor y D-C el menor, aunque también se utilizan otras nomenclaturas, como A-A' el mayor yB-B' el menor.
El centro de la elipse se suele nombrar O (origen). En la circunferencia los focos coinciden con el centro.
Los focos se suelen nombrar con la letra F acompañada de algún medio de diferenciarlos, F1 - F2, o F' - F" .
El diámetro mayor de la elipse se suele designar 2a, siendo a el semieje mayor. El semieje menor se denomina b y el diámetro menor 2b. La distancia de cada foco al centro se denomina c.
Los segmentos que van de cada foco a un punto de la elipse se denominan radios vectores; la suma de los radios vectores de cada punto es una constante igual a 2a.






En la imagen de la derecha vemos algunas otras líneas y puntos importantes de la elipse.
La circunferencia principal (c. p., en verde) tiene como centro el de la elipse, y como radio a. Se puede definir como el lugar geométrico de todos los pies de las tangentes a la elipse (como se ve en el ejemplo).
Las circunferencias focales (c. f., en verde también) son las que tienen como centro cada foco y como radio 2a. Las circunferencias focales y la principal cumplen una homotecia de razón = 2 y centro en cada foco (el de la circunferencia focal contraria).
La recta t en color cian es una tangente por un punto cualquiera. Al punto de tangencia se lo suele nombrar T, T1, T2, etc. Los segmentos perpendiculares a las tangentes que pasan por los focos, aquí en rojo, se suelen prolongar hasta la circunferencia focal del foco opuesto. No coinciden con la normal a la tangente salvo en los extremos de los ejes principales.
Los puntos donde se cruzan las normales con sus tangentes son los pies de la tangente. Ese punto pertenece siempre a la circunferencia principal. Al doble de la distancia de F al pie se encuentra el corte de la normal con la circunferencia focal del foco opuesto.
Diámetros conjugados
Se denominan diámetros conjugados a cada par de diámetros de la elipse que cumple que uno de ellos pasa por el centro de todas las cuerdas paralelas al otro (ver debajo el dibujo de la derecha).
Otra definición es que son conjugados los diámetros cuyos afines en una circunferencia afín a la elipse son perpendiculares (dibujo de la izquierda).






Los diámetros principales serían también diámetros conjugados. Existen varios métodos para hallar los diámetros principales a partir de los conjugados.
Rectas directrices
La definición de las rectas directrices está en una sección anterior (véase), y también la definición de la elipse a partir de ellas. Es una expresión de la excentricidad de la elipse. El modo de hallarlas gráficamente se muestra en la siguiente imagen.
Trazamos una perpendicular al diámetro mayor por un foco hasta la circunferencia principal, dibujamos por el punto de corte una tangente a dicha circunferencia; en el lugar donde esa tangente encuentra la prolongación del diámetro mayor está la directriz, que es perpendicular al diámetro mayor.






Dibujo de la elipse






Modo de dibujar la elipse conocida como "elipse del jardinero", mediante dos puntos fijos y una cuerda
Elipse “del jardinero”
El método se basa en la definición más corriente de la elipse, como lugar geométrico de los puntos cuya suma de distancias a los focos es constante. Los clavos o las chinchetas se colocan en el lugar de los focos, y la cuerda debe medir lo mismo que el eje mayor (2a). En el ejemplo de la foto al lazo de cuerda se le debe añadir la distancia de los focos. Con la cuerda tensa se mueve el lápiz o material de dibujo rodeando por completo los dos focos.
Se denomina “del jardinero” a este método porque sirve para trazar en el suelo elipses de gran tamaño y precisión suficiente, con medios modestos. Ver en la sección siguiente el modo de determinar los focos a partir de los ejes.
Modo de determinar los focos
El modo de determinar los focos a partir de los ejes, o un eje a partir de otro y los focos, se basa en la definición. Dibujados los dos ejes principales, se toma con el compás la medida a de la mitad del eje mayor. Haciendo centro en un extremo del eje menor, el compás cruza por el eje mayor en los focos.






Dado el eje mayor con los focos, la medida a aplicada a cada foco nos da arcos que se cruzan en los extremos del eje menor.
Dado un eje menor y la distancia de los focos, primero debemos hallar la recta sobre la que está el eje mayor, luego dibujar los focos a la distancia dada, y desde ellos tomar la distancia a los extremos del eje menor, que es la mitad del eje mayor.
Método de radios vectores
También denominado "por puntos"; con este método dibujamos un número suficiente de puntos mediante el compás. Como en el método tradicional visto antes usamos los radios vectores y la propiedad de que la suma de los radios vectores de un punto es igual a la medida del eje mayor.
Dados dos ejes principales y determinados los focos, se toman puntos al azar sobre el eje mayor entre el centro O y uno de los focos. Generalmente tres o cuatro, y preferiblemente cerca del foco por comodidad del dibujo.
Tomamos con el compás la distancia de un extremo del eje mayor (A) a cada uno de los puntos del eje (1). Haciendo centro en cada foco trazamos arcos con esa medida. A continuación tomamos el resto de la medida del eje mayor, desde el punto (1) al otro extremo (B), y con esa medida, haciendo centro de nuevo en los focos, cruzamos los arcos trazados antes. Las cruces nos dan puntos que pertenecen a la elipse.
Repitiendo la operación tantas veces como sea necesario obtenemos puntos de la elipse. Se completa el dibujo a mano o mediante plantillas de curvas.




0 comentarios:

Publicar un comentario